Chapter 8

Orthogonal Polynomials

Given a positive (except possibly at finitely many points), Riemann integrable weight func-
tion w(x) on [a,b], the expression

b
(f.9) = / f(@) 9(2) w(z) d

defines an inner product on C|a,b] and

b 1/2
172 = ( / f(:c)2w(rc)d:c> - VI

defines a strictly convex norm on C[a,b]. (See Problem 1 at the end of the chapter.) Thus,
given a finite dimensional subspace E of C[a,b] and an element f € Cla,b], there is a
unique g € E such that

If =gl = min|[f = hll2.
heE

We say that g is the least-squares approxzimation to f out of E (relative to w).

Now if we apply the Gram-Schmidt procedure to the sequence 1,z, z2,. .., we will arrive
at a sequence (@) of orthogonal polynomials relative to the above inner product. In this
special case, however, the Gram-Schmidt procedure simplifies substantially:

Theorem 8.1. The following procedure defines a sequence (Qy) of orthogonal polynomials
(relative to w). Set:

Qo(z) =1, Qi(z) =z — a9 = (z—ag)Qo(z),

and

Qn+1(x) = ($ - an)Qn(:r) - ann—1(~T)a

forn > 1, where

an = <1QnaQn>/<Qn»Qn> and b, = <$QnaQn—1 >/<Qn—1>Qn—1>

(and where x Qy, is shorthand for the polynomial x Q,(x)).
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80 CHAPTER 8. ORTHOGONAL POLYNOMIALS

Proof. It’s easy to see from these formulas that @, is a monic polynomial of degree exactly
n. In particular, the @, are linearly independent (and nonzero).

Now it’s easy to see that Qgy, 1, and @3 are mutually orthogonal, so let’s use induction
and check that @41 is orthogonal to each Qk, k < n. First,

<Qn+1»Qn> = <xQn,Qn> _an<Qn,Qn>_bn<Qn—1,Qn> =0

and

<Qn+1in—1> = <xanQn—1> - an<QnaQn—1> - bn<Qn—1in—1> = 07

because (@Qp—1,Q, ) = 0. Next, we take k < n — 1 and use the recurrence formula twice:

<Qn+17Qk> = <xQn7Qk>_an<Qn:Qk>_bn<Qn—1>Qk>
= (2Qn,Qr)=(Qn,xQk) (Why?)
(Qn; Qr+1 + apQp +bkQr—1) =0,

because k + 1 < n. O
Remarks 8.2.

1. Using the same trick as above, we have

bn = <xQn»Qn—1 >/<Qn—1in—1> = <QnaQn>/<Qn—1aQn—1> > 0.

2. Bach p € P, can be uniquely written p = >_"" | a;Q;, where a; = (p, Q; >/< Qi, Qi)

n—1

3. If Q is any monic polynomial of degree exactly n, then Q = Q, + >/~ ;QQ; (why?)
and hence
n—1
QU5 = 1@Qnll3 + > aflQills > 1Qal3,
i=0
unless @ = @p. That is, @, has the least || - ||2 norm of all monic polynomials of
degree n.

4. The @y, are unique in the following sense: If (B,) is another sequence of orthogonal
polynomials such that P, has degree exactly n, then P, = a,Q, for some a,, # 0.
(See Problem 4.) Consequently, there’s no harm in referring to the Q,, as the sequence
of orthogonal polynomials relative to w.

5. For n > 1 note that ff Qn(t)w(t)dt = (Qo, Q) = 0.
Examples 8.3.

1. On [—1,1], the Chebyshev polynomials of the first kind (7},) are orthogonal relative

to the weight w(z) = 1/v/1 — z2.

1 T
dx
To() T, () —— = cos mb cosnb db
/_1 () Tu() =y /0
0, m#£n
= T, m:nzo

/2, m=mn%#0.
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Because T,, has degree exactly m, this must be the right choice. Notice, too, that

\% To,T1,To, ... are orthonormal relative to the weight 2/mv/1 — 22

In terms of the inductive procedure given above, we must have Qg = Ty = 1 and
Qn = 27T, for n > 1. (Why?) From this it follows that a,, = 0, by = 1/2, and
b, = 1/4 for n > 2. (Why?) That is, the recurrence formula given in Theorem 8.1
reduces to the familar relationship Th,41(z) = 22T, (z) — T,—1(x). Curiously, Q, =
2-"+1T. minimizes both

e lp(x)]  and </_11p(x)2 \/1d—f—x2>

1/2

over all monic polynomials of degree exactly n.

The Chebyshev polynomials also satisfy (1 — 22) T/ (z) — x T/, (x) + n?T,(z) = 0.
Because this is a polynomial identity, it suffices to check it for all x = cosf. In this
case,

e -
and ) . .
() — n~ cos nsﬁhsllgng@(_ ;rsll;l)né’ cosf
Hence,

(1 —2?) T/(z) — 2 T (x) + n® Tn(2)

= —n2cosnf + nsinnb cot§ — nsinndcot 6 +n?cosh =0

. On [-1, 1], the Chebyshev polynomials of the second kind (U,,) are orthogonal relative
to the weight w(z) = v1 — 22. Indeed,

@) U () (1 ?) 0T
/_1 m(x) n(x)( —IL‘) —
:/’Tsin(m+1)9.sin(n—|—1)9 0, m#n
0

/2, m=n.

sin 6 sin 6

-sin29d9={

While we’re at it, notice that

As a rule, the derivatives of a sequence of orthogonal polynomials are again orthogonal
polynomials, but relative to a different weight.

. On [—1,1] with weight w(z) = 1, the sequence (P,) of Legendre polynomials are
orthogonal, and are typically normalized by P, (1) = 1. The first few Legendre poly-
nomials are Py(z) =1, Py(z) =z, Pao(z) = 32 — 3, and Py(z) = 3 2% — 2 2. (Check
this!) After we’ve seen a few more examples, we’ll come back and give an explicit

formula for P,.
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4. All of the examples we've seen so far are special cases of the following: On [—1,1],
consider the weight w(z) = (1 — 2)*(1 + 2)?, where o, 3 > —1. The corresponding

orthogonal polynomials (Pn(a‘ﬂ )) are called the Jacobi polynomials and are typically
normalized by requiring that

P ) = (”Za> _ (Oé+1)(a+n2')---(a+n)'

It follows that P.°% = P,

e 1-3-5-(2n—1)
(=1/2,-1/2) _
Fn B 2ny) T,

and 135 (2n+ 1)
.3.5--- +
p/2,1/2) _ ) n U. .
" 27(n + 1)! "

The polynomials Pn(a‘o‘) are called ultraspherical polynomials.

ot

There are also several classical examples of orthogonal polynomials on unbounded
intervals. In particular,

xT

(0, 00) w(z) =e” Laguerre polynomials,
(0, 00) w(z) = z% " generalized Laguerre polynomials,
(—00,00) w(z) = e’ Hermite polynomials.

Because @Q,, is orthogonal to every element of P,_1, a fuller understanding of @, will
follow from a characterization of the orthogonal complement of P,_1. We begin with an
easy fact about least-squares approximations in inner product spaces.

Lemma 8.4. Let E be a finite dimensional subspace of an inner product space X, and let
z € X\ E. Then, y* € E is the least-squares approximation to = out of E (a.k.a. the
nearest point to x in E) if and only if (x — y*, y) = 0 for every y € E; that is, if and only
if (v —y") L E.

Proof. [We’ve taken E to be finite dimensional so that nearest points will exist; because X
is an inner product space, nearest points must also be unique (see Problem 1 for a proof
that every inner product norm is strictly convex).

(«<=) First suppose that (x —y*) L E. Then, given any y € E, we have

lz=yl3 = l@—y)+ @ =y3 = ==y 3+ ly" —yl3

because y* —y € E and, hence, (x —y*) L (y* —y). Thus, ||z —y| > ||z —y*| unless y = y*;
that is, y* is the (unique) nearest point to = in E.

(=) Suppose that z—y* is not orthogonal to E. Then there is some y € E with |ly|| =1
such that a = (z —y*, y) # 0. It now follows that y* +ay € F is a better approximation to
z than y* (and y* + ay # y*, of course); that is, y* is not the least-squares approximation
to x. To see this, we again compute:

e = (" +a)ll; =z —y") —ayl3 = (x—y") —ay, (@ —y") — ay)
|z = y*[I3 = 2a (& — y*, y) +
2 < e —yt]l3

= Jlz—y*3-a

Thus, we must have (z — y*, y) = 0 for every y € E. O
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Lemma 8.5. (Integration by-parts)

b n b
/ u™y = Z(—l)k_lu(”_k)v(k_l)]b + (—1)”/ uv™,
a a

k=1 @

Now if v is a polynomial of degree < n, then v(™ = 0 and we get:

b
Lemma 8.6. f € C[a,b] satisfies / f(@) p(z) w(x)de = 0 for all polynomials p € Pp_1 if

and only if there is an n-times differentiable function u on [a,b] satisfying fw = u™ and
u® (a) = u®(b) =0 for all k =0,1,...,n — 1.

Proof. One direction is clear from Lemma 8.5: Given u as above, we would have fab frw =
f; uMp = (—1)" j: up™ = 0.

So, suppose we have that f: fpw =0 for all p € P,,_;. By integrating fw repeatedly,
choosing constants appropriately, we may define a function u satisfying fw = u™ and
u(k)(a) =0 for all k =0,1,...,n — 1. We want to show that the hypotheses on f force
u®(b) =0 for all k =0,1,...,n — 1.

Now Lemma 8.5 tells us that

0 - | L = YD) )
@ k=1

for all p € P,,_;. But the numbers p(b), p’(b), ..., p" 1) (b) are completely arbitrary; that is
(again by integrating repeatedly, choosing our constants as we please), we can find polynomi-
als py of degree k < n such that p,(qk)(b) # 0 and p,(j)(b) = 0for j # k. In fact, pg(v) = (x—b)*
works just fine! In any case, we must have (¥ (b) = 0 for all k = 0,1,...,n — 1. a

Rolle’s theorem tells us a bit more about the functions orthogonal to P, _1:

Lemma 8.7. If w(z) > 0 in (a,b), and if f € C[a,b] is in the orthogonal complement
of Pn—1 (relative to w); that is, if [ satisfies fabf(a’) p(z)w(z)dx = 0 for all polynomials
p € Pn_1, then f has at least n distinct zeros in the open interval (a,b).

Proof. Write fw = u(™, where u®) (a) = u®) (b)) = 0 for all k = 0,1, ..., n—1. In particular,
because u(a) = u(b) = 0, Rolle’s theorem tells us that v’ would have at least one zero in
(a,b). But then u/(a) = u/(c) = v/(b) = 0, and so u” must have at least two zeros in (a,b).
Continuing, we find that fw = u™ must have at least n zeros in (a,b). Because w > 0, the
result follows. d

Corollary 8.8. Let (@) be the sequence of orthogonal polynomials associated to a given
weight w with w > 0 in (a,b). Then, the roots of Qy are real, simple, and lie in (a,b).

The sheer volume of literature on orthogonal polynomials and other “special functions” is
truly staggering. We’ll content ourselves with the Legendre and the Chebyshev polynomials.
In particular, let’s return to the problem of finding an explicit formula for the Legendre
polynomials. We could, as Rivlin does, use induction and a few observations that simplify
the basic recurrence formula (you're encouraged to read this; see [45, pp. 53-54]). Instead
we'll give a simple (but at first sight intimidating) formula that is of use in more general
settings than ours.
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Lemma 8.6 (with w =1 and [a,b] = [—1,1]) says that if we want to find a polynomial
f of degree m which is orthogonal to P,,_1, then we’ll need to take a polynomial for u,
and this u will have to be divisible by (z — 1)™(z 4+ 1)™. (Why?) That is, we must have
P, (x) =c,-D" [(12 — 1)”], where D denotes differentiation, and where ¢, is chosen so that
P, (1) =1.

Lemma 8.9. (Leibniz’s formula) D"(fg) = i (Z) Dk(f) Dn_k(g),
k=0
) =

Proof. Induction and the fact that (?7]) + ("¢") = (})- O

Consequently, Q(z) = D™[(z — 1)"(z + 1)"] = >1_y (}) D*(x — 1)" D"~*(z + 1)" and
it follows that Q(1) = 2"n! and Q(—1) = (—1)"2"n!. This, finally, gives us the formula
discovered by Rodrigues in 1814:

1
2np!

The Rodrigues formula is quite useful (and easily generalizes to the Jacobi polynomials).

Pu(z) = D*[(2 — 1)"]. (8.1)

Remarks 8.10.
1. By Corollary 8.8, the roots of P, are real, distinct, and lie in (—1,1).

2. From the binomial theorem, (z? — 1)™ = > (=1)*(})2®"~2*. If we apply 57 D"
and simplify, we get another formula for the Legendre polynomials.

[n/2]
) 1 e\ (2n =2k . o
Pu(z) = o > (-1 <k>< ., >l .
k=0
In particular, if n is even (odd), then P, is even (odd). Notice, too, that if we let
P,, denote the polynomial given by the standard construction, then we must have

P, =27"(*")P,.

n
3. In terms of our standard recurrence formula, it follows that a,, = 0 (because P, (x)?
is always odd). It remains to compute b,. First, integrating by parts,
1

/_11 Py(x)*dx = J?Pn(.’li)ﬂ 1_1 - / x - 2P, (x) Pl (x) dx,

-1
or (Py,P,) = 2 —2(P,,zP.). But 2P, = nDP, + lower degree terms; hence,
(P,,zP)) = n(P,,P,). Thus, (P,,P,) = 2/(2n 4+ 1). Using this and the fact
that P, = 2_"(25) P, we'd find that b, = n?/(4n? — 1). Thus,

o i 2n+ 2\ ~
Py = 277 1<n+1>Pn+1
o + 2 ~ n? ~
= 9ol P, - —P,_
(n%—l){x " (4n2—1) "
2n+1 n
= >, — —— P 4.
n—l—lm n TL—|—1 n—1

That is, the Legendre polynomials satisfy the recurrence formula

(n+1)Poyi(z) = 2n+ 1)z Py(z) — nPy_1(x).
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4. Tt follows from the calculations in remark 3, above, that the sequence ﬁn = 2”; Lp,

is orthonormal on [—1,1].

5. The Legendre polynomials satisfy the differential equation (1 —xz2) P/ (x) — 2z P! (x) +
n(n + 1) Py(z) = 0. If we set u = (22 — 1)"; that is, if (™) = 2"n!P,, note that
(22 — 1)u’ = 2nau. Now we apply D"*! to both sides of this last equation (using
Leibniz’s formula) and simplify:

w2 (22 — 1) + (n + 1) u*tY 22 4 W u(™ 2

=2n [u" z + (n+ 1) ul™]
— (1 - 2?)u? 224 4 (n 4 1)u™ = 0.

6. Through a series of exercises, similar in spirit to remark 5, Rivlin shows that | P, (z)| <
1on [—1,1]. See [45, pp. 63-64] for details.

Given an orthogonal sequence, it makes sense to consider generalized Fourier series
relative to the sequence and to find analogues of the Dirichlet kernel, Lebesgue’s theorem,
and so on. In case of the Legendre polynomials we have the following:

Example 8.11. The Fourier-Legendre series for f € C[—1,1] is given by >, ( f, P ) P,
where

S YR
j il
5

P, and (f,P)= /_ 1 f(z) Py(z) d.

The partial sum operator S,,(f) = > p_o( f, 2 ) P, is a linear projection onto P,, and may

be written as
/ F(t) Kot ) dt

where K,(t, ) = Y3_o Pi(t) Pi(w). (Why?)
Because the polynomials P, are orthonormal, we have

YULBOP = ISaDI3 < 1713 = DI Bl
k=0 k=0

and so the generalized Fourier coefficients ( f, f’k) are square summable; in particular,
(f, ﬁk) — 0 as k — oo. As in the case of Fourier series, the fact that the polynomials
(i.e., the span of the 131«) are dense in C|a,b] implies that S,(f) actually converges to f
in the || - |2 norm. These same observations remain valid for any sequence of orthogonal
polynomials. The real question remains, just as with Fourier series, whether S,,(f) is a good
uniform (or even pointwise) approximation to f.

If you're willing to swallow the fact that |P,(x)| < 1, we get

n
2k+1 [2k+1
S

Hence, |[S,,(f)|| < (n+1)2||f||. That is, the Lebesgue numbers for this process are at most
(n +1)2. The analogue of Lebesgue’s theorem in this case would then read:

If = Sa(N < Cn*En(f).

n

2
S @k+1) = (n+1)%

2
k=0

N | =
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Thus, S,(f) = f whenever n?E,(f) — 0, and Jackson’s theorem tells us when this will
happen: If f is twice continuously differentiable, then the Fourier-Legendre series for f
converges uniformly to f on [—1,1].

The Christoffel-Darboux Identity

It would also be of interest to have a closed form for K, (t,z). That this is indeed always
possible, for any sequence of orthogonal polynomials, is a very important fact.
Using our original notation, let (@) be the sequence of monic orthogonal polynomials

corresponding to a given weight w, and let (@n) be the orthonormal counterpart of (Qy);

in other words, Q,, = )\n@n, where A, = v/ (Qn, Qr ). It will help things here if you recall
(from Remarks 8.2 (1)) that A2 = b, \2

n—1-*

As with the Legendre polynomials, each f € Cla,b] is represented by a generalized
Fourier series ), ( f, Qk ) Qr with partial sum operator

b
Su(f) () = / F(8) Kot ) w(t) dt,

where K, (t,z) = > 1_, @k(t) @k(m’) As before, S,, is a projection onto P,; in particular,
Sp(1) =1 for every n.

Theorem 8.12. (Christoffel-Darboux) The kernel K, (t,x) can be written

) — /\"_H/\—l Q\n-‘rl(t) @\n(lf) — Q\n(t) @n+1(l‘).

t—x

D Qu(t) Qula
k=0

Proof. We begin with the standard recurrence formulas

Qn+1(t) = (t — an) Qn(t) — bpQn_1(2)
Qnt1(z) = (7 — an) Qn(z) — b, Qn-1(7)

(where by = 0). Multiplying the first by Q,(x), the second by Q,(t), and subtracting:

Qn+1(t) Qn(7) — Qn(t) Qn41(z)
= (t_-r)Qn(t) Qn(x) + bn[Qn(t) Qn—l(x) - Qn(x) Qn—l(t)]

(and again, by = 0). If we divide both sides of this equation by A2 we get

A;Z[Qn+1(t) Qn(x) - Qnr(t) Qn+1(117)]
= (- 2)Bu(t) Bulr) + N2 [ Q) Qur(2) — Qul®) @ur()].

Thus, we may repeat the process; arriving finally at
)\;2 [Qn+1(t) Qn(x) - Qn(t) Qn-ﬁ-l(x) ] = (t - JY) @k(t) Qk(*r)

The Christoffel-Darboux identity now follows by writing Q,, = /\n@n, etc. O

And we now have a version of the Dini-Lipschitz theorem (Theorem 7.3).
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Theorem 8.13. Let f € C[a,b] and suppose that at some point zo in [a,b] we have

(i) f is Lipschitz at zo; that is, | f(xo) — f(z)| < Klxg — x| for some constant K and all
x in [a,b]; and

(ii) the sequence (@n(xo)) is bounded.

Then, the series . ( f, Qi) Qr(x0) converges to f(x).
Proof. First note that the sequence A, 11\, ! is bounded: Indeed, by Cauchy-Schwarz,
/\721-1-1 = < Qn+la Qn+1 > = <Qn+1v x Qn >
< N@ntallz- [z - [@nll2 = max{lal, [b]} Apt1An.

Thus, Ap+1A,;t < ¢ = max{|a|, |b|}. Now, using the Christoffel-Darboux identity,
SulF) (o) = F (o) = [ [F(t) = F(20) ] Kot o) w(t) de
b _ f(r ~ ~ ~ ~
ety [LOLEN G 0 Gten) — Gult) Gua(a) | w0
a 0
= >\n+1)\;1 [<h7@n+1 ) Qn(l’o) - <hv@n ) @n+1(l'0)],

where h(t) = (f(t) — f(xo))/(t — z¢). But h is bounded (and continuous everywhere ex-
cept, possibly, at x¢) by hypothesis (i), A,11A,! is bounded, and Qn(zo) is bounded by
hypothesis (ii). All that remains is to notice that the numbers (h, @, ) are the generalized
Fourier coefficients of the bounded, Riemann integrable function h, and so must tend to
zero (because, in fact, they’re even square summable). O

We end this chapter with a negative result, due to Nikolaev:

Theorem 8.14. There is no weight w such that every f € Cla,b] has a uniformly conver-

gent expansion in terms of orthogonal polynomials. In fact, given any w, there is always
some f for which ||f — S, (f)] is unbounded.
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Problems

> 1. Prove that every inner product norm is strictly convex. Specifically, let (-,-) be an
inner product on a vector space X, and let ||z|| = \/{(z,x) be the associated norm.
Show that:

(@) [lz+yI?+]lz—ylI? = 2 (|z||*+||y||?) for all 2, y € X (the parallelogram identity).

(b) If izl =r = yl] and if ||z =y} = 5, then H%EHQ =r? - (5/2)2. In particular,
Hm_eryH < r whenever x # y.

The remaining problems follow the notation given on page 79.

> 2. (a) Show that the expression || f||; = fab | £ (t)|w(t) dt also defines a norm on C[a,b].
(b) Given any f in Cla,b], show that [|f1 < c|lfl> and [|f]l2 < ]lf]}, where ¢ =

1/2
( 12 w(t) dt) .
(c) Conclude that the polynomials are dense in C[a,b] under all three of the norms
[l 1 {2, and |- .
(d) Show that Cla,b] is not complete under either of the norms || - ||; or || - ||2.
3. Check that @, is a monic polynomial of degree exactly n.

4. If (P,) is another sequence of orthogonal polynomials such that P, has degree exactly
n, for each n, show that P, = «,,Q,, for some «,, # 0. In particular, if P, is a monic
polynomial, then P, = @,. [Hint: Choose oy, so that P, — @, Q, € Pnr_1 and note
that (P, — an,Qp) L Pr_1. Conclude that P, — a, @, = 0.]

5. Given w > 0, f € C[a,b], and n > 1, show that p* € P,_; is the least-squares
approximation to f out of P,_; (with respect to w) if and only if (f —p*, p) =0 for
every p € P,_1; that is, if and only if (f — p*) L Pp_1.

6. In the notation of Problem 5, show that f — p* has at least n distinct zeros in (a, b).

7. If w > 0, show that the least-squares approximation to f(z) = ™ out of P,,_1 (relative
t0w) is @) (2) — " — Qu(a).
> 8. Given f € Cla,b], let p¥ denote the best uniform approximation to f out of P, and
let ¢ denote the least-squares approximation to f out of P,,. Show that || f — ¢} |2 <
[[f — pklle and conclude that ||f — ¢}|]2 — 0 as n — oc.
9. Show that the Chebyshev polynomials of the first kind, (73,), and of the second kind,
(Uy,), satisfy the identities

Tn(2) = Un(x) — 2 Up-1(z)
and

(1 —2)Up_1(z) = 2 Tp(z) — Tpyr(z).

10. Show that the Chebyshev polynomials of the second kind, (U,,), satisfy the recurrence
relation
Upi1(z) =22 Uy (x) — Up—1(x), n>1,

where Up(z) = 1 and Uy (z) = 2z. [Compare this with the recurrence relation satisfied
by the T5,.]



